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ABSTRACT 

The purpose of the paper is to invert Riesz potentials and some other 

fractional integrals on the n-dimensional spherical surface in R n+l in the 

closed form. New descriptions of spaces of the fractional smoothness on 

a sphere are obtained in terms of spherical hypersingular integrals. It is 

shown that Riesz potentials of the orders n, n + 2, n -i- 4,... on a sphere 

are Noether operators and their d-characteristic depends on the radius of 

the sphere. 

I n t r o d u c t i o n  

~-Yactional integrals on the surface of the n-dimensional unit sphere E .  C R n+l 

may be defined in a large number of ways (see, e.g., [15]). We consider a Riesz 

potential  

(1) ( I~ ) (x )  = c.,o { Ix - YI°-"~(y)dy, 
J E n  

where a > 0; a # n ,n  + 2, n + 4 , . . . ;  
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Due to the outward simplicity and to the plurality of applications the Riesz 

potential is a typical object in fractional calculus. Nevertheless, the inversion 

method for I a, covering all admissible a seems unknown. There is a simple 

idea to change variables in (1), using the stereographic projection, and to turn 

the potential (1) in such a way into the Riesz potential over R n (up to some 

multipliers). The latter may be inverted by diverse known methods (see [14], 

[13]). This approach, suggested by the author, enables us to obtain a number of 

estimates of Iaq0 using the corresponding estimates of the space potentials (see 

[10], [19]). Nevertheless, this way leads to the unnatural awkward construction 

of ( Ia )  -1 which depends on the pole of the projection. Furthermore, the proof of 

such an inversion formula is connected with large technical difficulties. It is more 

preferable to construct the operator ( Ia )  -1 directly in spherical terms. In [10] 

Pavlov P.M. and Samko S.G. proved that if f = 1%o, ~0 E Lr(En ), 0 < a < 2, 

1 _< p < 0% then 

(3) ~ f(x)--f(Y) d. 
qo(x) = clf(x) "4- c2 n IX -- y---]-~--~ y' 

where 

(%-F-) 
( o), 7r"/2F 1 - ¥ 

(Lp) f 

The method of [10] gives no answer how to invert I a for all a > 2. In the 

present paper we suggest two different inversion methods for Riesz potentials 

of finite Borel measures in spherical terms. These methods are suitable for all 

a > 0 ( the definition of Ia~o for a = n, rt + 2, n + 4 , . . . ,  see below) and may 

be generalized for all complex a with Re a > 0 as in [13]. Our formulas contain 

hypersingulax integrals, the convergence of which is associated with a type of 

the measure to be restored. For arbitrary finite Borel measure these integrals 

converge in a weak sense. If the measure is absolutely continuous with a density 

belonging to Lp(En), 1 < p < oo, then the convergence of hypersingular integrals 

is treated in the "almost everywhere" sense and in L : n o r m .  If the density is 

continuous, then a uniform convergence is used. 
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In section 1, we construct the operator ( / a ) - i  using a direct regularization of 

the potential Ia~0. This method was suggested by A.Marchaud in [8] for one- 

dimensional fractional integrals and was developed in [13] for multidimensional 

potentials. The case a = n, when/a~0 turns into the logarithmic potential, is 

considered in section 2. Another inversion method for Ia~0, based on properties 

of a Poisson integral, is given in section 3. 

The inversion problem for potentials (1) is closely connected with the charac- 

terization of functions of a fractional smoothness on a sphere. In section 4 we 

give a number of diverse descriptions of the spaces L~(E, ) ,  C a ( ~ , ) ,  M~'(E,)  

generated by Lp-functions, by continuous functions and by finite Borel measures 

respectively. By the way we obtain inversion formulas for some fractional integral 

operators introduced by du Plessis N.[ll], Greenwald H.C. [6, 7], Muckenhoupt 

B. and Stein E.M.[9]. All these operators have the same range a s / a  (with the 

exception of some values of ¢r) and are built by means of a Poisson integral. 

The investigation of Riesz potentials of the orders a = n + 2k, k = 0, 1 , . . . ,  

leads to the following integral equation on a sphere ~ , ( a )  = {x e R " + I :  Ix I = a}: 

 (y)lx - yl zk log Ix - yldy (4) f(x).  

In section 5 we show that in contrast to the case a ~ n ÷ 2k the operator in the 

left-hand side of (4) may be the Noether one with a nontrivial d-characteristic. 

We construct its two-sided regularizer and the d-characteristic explicity. It is 

interesting that the d-characteristic depends on the value of a radius a. 

The author is deeply grateful to Professor E. Shamir for his support and en- 

couragement during the work on this paper end to SimchR Kojman for typing 

this manuscript. 

Notation: 

1}.a.=l:~., 1 )  

dz denotes the Lebesgue measure on ~ , ;  y(l~,,) = {Y.,~,(z)} denotes a com- 

plete orthonormal system of spherical harmonics on ~,,; m = 0 ,1 , . . . ;  p = 

1 ,2 , . . . , d , , (m) ,  d,,(m) being a dimension of the subspace of harmonics of the 

order m, d,,(m) = (n + 2m - 1~ "+'L~L~:?)2 (see [18]). B(I],,) is the Borel a-algebra / m ! (n - - l ) !  

of En. M ( E . )  denotes a Banach space of all regular complex valued finite Borel 
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measures on B(En) with the norm IlvllM equaled to a total variation of the mea- 

sure v on E .  ([3]); C ( E . )  denotes the space of all continuous functions on E . ;  

S ( E . )  denotes the space of all infinitely differentiable functions on E,~ with the 

s tandard Shwartz topology; S'(E.)  is a dual to S(En);  ( f ,w)  denotes a value of 

a functional f e S'(~, ,)  on a function w • S(~,,).  If f • M(~n) ( f  • LI(~,)) ,  
then 

fm,~, = (f, Ym,~) denote Fourier-Laplace coefficients of a functional f • S'(~n); 

en+,(O,... ,0, 1); a x = (sup{a, 0})x; P(a'a)(t) denotes a Jacobi polynomial; Z+ 

denotes the set of all nonnegative integers; 

II~[[p = II~IIL,(~..); 

p ~ ( ~ , y )  = 
1 - -  r 2 

a - l Y  - r z l  "+1 
is a Poisson kernel, 0 < r < 1; 

f (x ,  r) = (f, P~(x, .)) denotes a Poisson integral of a function (measure) f .  

1/: 
(5)  ( x ~ ¢ ) ( ~ )  = r ( ~ )  oo ¢ ( t ) ( r  - t)~-'dt 

is a Riemann-Liouville fractional integral of the order A > 0. We define a trun- 

cated Marchaud derivative by the equality 

1 ~ ( - 1 ) i f ( r - j t )  tl+X , (D~,,¢l(r) = ~(~1 
j=O 

where ~ > O, ~ > A, 
[oo (1 - ~-')~ 

tl+X dt 

(see [14]). 
Let E C R be some set with a limit point ~0, aaad let {A~}e~E be a family of 

linear operators defined on Y(~n). If lim~-.., 0 A~Y,,,,j, = Y,,,,~, VY,,,, G y(E,,), 
then the famlily {A,} will be called an approximate identity as ¢ --~ ¢0. 

Let us introduce functional spaces to be used later. Given a E R, 1 < p _< oo, 

we denote by L~(~,,)  (C~(~n),  M~(~, , ))  the space of functionals f E S'(~, ,)  with 

the following property: for each f E S ' (~n)  there exists a function f(~) E Lp(E,~) 
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(f(a) E C(En), a measure f(c,) E M(E,~)) such that jm,j, ¢(~) = (m+ 1)afma, for any 

m, p. The space L~(E,,) (C"(E,) ,  M~'(E,,)) is a Banach one with respect to the 

n o r m  

(6)  Ilfll = ) lf(~)l lp ( l lf l l  = II / (~) l lc (~ . . ) ,  Ilfll = II f (~)IIM(~. ) )  • 

If  a > 0 the elements of the spaces L~(E.),  C~(En), Ma(En) are ordinary 
functions represented by spherical fractional integrals (see section 4). Besides 

the Riesz potential with the expansion 

r(m+~) 
~-~--y~., , .  Y.., .  (r) I°~ ~ ~E r (m + ~ , 

m,lz 

(see [15]) we use the following fractional integrals: 

lfo' (8) I ~  = F(a) (1-P)a-lcfl(X'l)dp 

(9) 

fo  1 a--I 1 (log 1) ~(x,,)~, I~V~- r ( . )  

~ .--, r ( m  + 1) 
~ r(-~ ¥ i+%)~"~'"Ym'") ' 

,~ r a +  ) ~,.,.Y,.,. , 
rnd~ 

(10) I2~ = F-~ log P/ P 
m~#t 

(11) I ~  - ~1/2(n - 1)0-")/2 
r ( a /2 )  

, 1_)o-, . - 1  
"f0 p("-a)/2(log P/ I(,~_,)/2(---~log})v~(x,p)dp 

~o(x, p) being a Poisson integral of a function (measure) ~, I(~-l)12(z) being a 

modified Bessel function of the first kind. The expansions above may be easily 

obtained by means of well known expansion of a Poisson integral 

~(x,p) ~ ~ p"~,.,,,r.,,.(.). 
m~p 
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The integral (8) was introduced in [11]. The expansions (9), (10) and (11) were 

considered in [6]-[7], [9] and [1] respectively (see also [15], [2]). The mean value 
O O 

of ~ on ~ .  is supposed to be zero in (10), (11). We denote by L , (~ . ) ,  C(Y..), 
O 

M(~..) the subspaces of Lp(~.), C(~.) ,  M ( ~ . )  respectively, consisting of func- 

tions(measures) with a zero mean value. It will be convenient to use the following 

notation: 

[ L p ( ~ . )  if l < _ p < o o ,  f L~(~.) if l < _ p < o o ,  x , ( r . . )  = 
ccr~.) i fp = co, x ; ( r . , ) = /  c° ( r . . )  ifp = ~ .  / 

I denotes the end of the proof. 

1. The  inversion of Riesz potentials  by the  direct  regular izat ion 

m e t h o d  

According to (7) in order to construct the operator ( P ) - ]  we may continue P~0 

analytically to the half-plane ~a  < 0 and then replace a by - a .  To do this we 

represent P~o as a one-dimensional integral with the extracted singularity in the 

integrand. Let us go over to the "polar coordinates" on a sphere by means of the 

formula 

(1.1) 

/2 1 

where 

(1.2) (M~,~)(=) = (1 - t~)('___ -")/2 f ~(v)dv 
O'n--I Jslm# 

m!V(n/2)  v( .12_] , .12_]) t t~,  ^ y, tz ~ V" 

is a mean value of ~ on a planar section {y E E .  : z y  = t }  (see, e.g., [16], p. 
183). By virtue of (1.1) we have 

(1.3) 

(x°~)(=) = 2(°-")/2~.,°/" (1 - ~v)(°-")/2~(v)dv 
J = .  

2 ] - ( .+ . ) /~F  . - .  ( - ~ )  [ ~°/~-'g,.,(1 - ~)d~, 
= r(n12)r( . /2 )  Jo 
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where 

(1.4) 
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g,,~(~) = (1 + ~ ) ~ / ' - ' ( M ~ ) ( x ) .  

Following to A.Marchaud's method ([8], [13]) we represent the analytical con- 

tinuation of the integral (1.3) in the form of a difference integral. After replacing 

a by - a  we obtain a solution of the equation IC'~0 = s t in the form 

(1.5) /: ) 1 ~-a/2-1 -ill) &? Taf, ~o(z ) -  7 t (a)  ( - 1 ) J g " l ( 1  "~J 
j--O 

where 

£ > a /2 ,  7t(a)=~t(a/2)r(n/2)2("-=)/2-t/F(-~-), 

(1.6) , , t ( ,~/2)  = ( t  - ~ - , ) t  at 
t a / 2 + l  

o r  

1 2 [  ] 
j=O 

The integral in (1.7) may be transformed into an integral over ~n. Denote 

by w~ some rotation with the property x = w~e.+l. Given y E E , ,  we write 

y = ( q , a ) i f y  = ( 1 - r l ) e , + x  + a V e - r / ) ,  77 q [0,2], a 6 E , -1 .  F o r y =  (t/,a), 

j E Z+, jq  < 2 we denote yj = (jr/, a). The point YJ E ~ ,  has the same "angle" 

coordinate as y, and its distance to e ,+l  "along the vertical" is j times larger 

than the similar distance of the point y. Using this notation we can rewrite (1.7) 

in the following form 

dy 
( 1  - y . + 1 ) ( n + ~ ) / 2  " 

One ea~ show that (1.7') coincides with (3) if 0 < a < 2, g = 1. 
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To give a strict proof of (1.7), (1.7') we introduce the truncated integral 

(1.8) (T~f)(x) 

7t(a) fe r}-a'2-' ~ (~)(-1)i(2-jr})+/2-1(M°-is')(z) dT1 
j--0 

7t(a) ~ ,+ ,  ~(~) (-1)j(2-j(1-y'+l)~n,2-I 
- <'-,  j=0 i 7 ~  ) +  / (~ ,~i)  

dy 
• ( 1  - y , + 1 ) ( n + ~ ) / 2  

and an average kernel 

(1.9) ~l, ~/2('~) = ,~(~/2)r(1 .~  (-1)'(,1 - j)~./~, ~ > ~/2. 

Tiffs kernel arises when inverting one-dimensional fr~tionM integrMs and has 

the following properties (see [14], [13]): 

f0 ° / °(~/~-') (1.10) At,a/2(rl)drl = 1, At,a/2(r/) = [ O(rf/2_t_l  ) 

We introduce the analytical family of operators 

if r /e  (0, 1], 

if r/E [1, c~). 

m!rCnl2 +'r) p~./2+-,-~,./~-.~-~)(t)~.,,,,y,.,,~,(x), 
(1.11) (M?~)(x) = ~ r(m + . / 2  + 71 

rn~D 

12 
t e [-1,11, Re-~ > - g ,  

being an approximate identity as t ~ 1. If 7 = 0 the series (1.11) represents the 

mean value (1.2). In the case Re 7 > 0 the operator M~ is a spherical convolution 

(M?v)(z) = ~. k~(zy)dv(y), (1.12) 

where v E M(~.), 

(1.13) 
k?(r) = r ( . / 2  + ~) ( ,  - t)~-1(1 + ,)1-,/2 

27r"/2r(-r) (I - t),,/~+'r-~ 

To prove the inversion formula (1.7) we need the following 
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LEMMA 1.1: 

(1.14) 

(1.15) 

where 

(1.16) 

Proof'. 

INVERSION OF FRACTIONAL INTEGRALS 

Let f = I'~u, u E M ( E , ) ,  0 < a < n. Then 

(T:S)(~)= ]o~:,,,o/~(~)(1 - ~'~ ("-°)/~-~ °/~ -5-)+ (M 1 _ ~ ~)(~)d, 

= ~ .  k f , " ( ~ y l e . ( y ) ,  

_ r("~--~) t l  ~)'-"/~ 
k f ' a ( r )  27r"/~r(a/2) '  + 

Denote 

h~, . ( t ) -  ~ ( t  + 1)(+"-")/~-'(Mg/~u)(x). 
i t 2 )  

Let us prove the equality 

(1.17) g=,s(*) = (z$ h=,.)(~), 

55 

I.?. being a fractional integral operator (5). It is sufficient to establish the equality 

of Fourier-Laplace coefficients of both sides of (1.17). By virtue of (1.4), (1.2), 

(7) we have 

r(m + ~-~)m!r.(~/2) P£"/~-',"/~-~)(,-)(1 
(g(') ' f(*))m'" = r-(~ ¥-%+7-)r(~ ¥ ~--~) + * ) : / * - " ~ ' "  

The same expression may be obtained for Fourier-Laplace coefficients of the right- 

hand side if we use (1.11) and the formula 7.392(4) from [5]. Since the integral 

(I~./2lh,,,,i)(1) is finite for almost all x then using (1.17), the equality 

r("~-~)2 '-("-~)/~ ~/2 
(T•f)(x) = r (n t2 )  (D+,, g , j ) ( 1 )  

and the remark 2.1 from [13] we can obtain (1.14). The representation (1.15) 

may be derived from (1.14) by changing the order of integration. | 

The integrand in (1.7) has a strong singularity at the point ~/= 0, therefore 

we treat the integral in (1.7) as lim,_o(T~f)(x). In the general case f = I~u, 
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u E M ( ~ n ) ,  this limit wiU be unders tood  in a weak sense. If  dv(y)  = ~0(y)dy, 

~0 E C ( ~ n ) ,  then  it is na tu ra l  to t rea t  the lime.-.o(T~f)(x) in a uni form metr ics .  

In the case ~ E Lp(~,,) we use the a.e. convergence or the one in Lp-norm. As it 

is usual ,  the  proof  of the a.e. convergence is based on an es t imate  of  the  max ima l  

ope ra to r  ~(x)  --* sup ,>  0 [ ( T ~ / ~ ) ( z ) [ .  

To prove such an es t imate  we obta in  the general result  for the max ima l  ope ra to r  

( g * ~ ) ( x )  = supe>o I (ge~) (z ) l ,  where 

(Ke~)(x) = [_ k,(xy)~o(y)dy. (1.18) 
n 

Denote a , (~)  = {y • ~ . :  ~y > O,  where t • ( - 1 , 1 ) ,  • • r. .;  

~*(x)  = sup 1 I~(y)ldy ,~(_,,,) (1 -t)- /~ ,(~) 

O.n_ 1 ~1 
= sup - - -  (1 - rz)"lZ-l(M°l~l)(z)dr. 

r e ( - 1 , 1 )  ( 1  - t)nl 2 

~ * * ( x )  = s u p  1 fa I ~ ( y ) l d y  
tE(--l,1) rues at(x) t(x) 

is a Hardy-Li t t l ewood max imal  funct ion on ~,~. It  is easy to see tha t  cl~0*(x) _< 

~**(x) < c2~*(x) for some posit ive constants  cl,  c2 which depend  only on n. 

THEOREM 1.1: Let 
r l -n /2  

(1.19) Ik,(1 - ~)1 < ~ ( ~ / ~ ) ,  

~(~) being ~ non-increasing integrab~e funaion on (0, oo). Then 

(K*~,)(~) ___ A~.~0*(~), A = ~(~)d~, 

en being a constant depending; on n. 

Proof." We m a y  assume ~ >_ 0. Using the a rgument  of T h e o r e m  2 f rom [17, 

p.64] we have 

/ 2 /~  
I(Ke~o)(x) _< a ._~  A(~)(2 - e ~ ) " / 2 - ' ( M [  _ ¢ ~ , ) ( z ) d ~  _< A sup ¢~,~(h), 

JO 0<h<2 

where 

a ' - ~  (1 - r ) ' - " / 2 1 ( 1  - r2)'/z-'(M°qo)(x)ldr. ¢ , ,~ (h )  = h _~ 
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Let us estimate the last integral. We have 

1 f l  
¢~,~(h) = ~ J ,I- ,  u( r )dv(r) ,  

57 

where 

,,0") = -~',,-~ = f l (  1 - t~)~/~-'(M", ~)(~) dr, I t ,(,) l  _ _ _  (I - r)n/2~p*(z). 

Hence 

1 1 n / 1  v(r)(1 - r ) - " / 2 d r  ¢~,~(h) = ~ [uvh_h  + (1 - : )  -h  

= - h )  1 - _< 

COROLLARY 1.1: Let ~ E Lp(E,,), 1 < p < oo. I f  k , (xy)  satisfies (1.19), then 

there exist constants o ,  c2 depending only on n such that 

IIg*~llp _ clll~ll, i f  1 < p < oo, 

and 

rues {x E ~ .  : ( g * ~ ) ( . )  > a} ~ ~ll~lla i f  p = 1, a > 0. 

This assertion follows from the similar one for ~0**(x). The latter may be 

verified using the scheme from [17] with insignificant variations when proving a 

covering lemma (these variations axe caused by the compactness of E . ) .  

Definition 1.1: The approximate identity {A~}~--,+0 is called regular, if there 

exists 6 > 0 such that for all e E (0,6) and for all ~ E L I ( E , )  the function 

(A,tp)(x) is represented by a spherical convolution (1.18) with a kernel k, (xy)  

satisfying (1.19). 

We have the following examples of regular approximate identities: a family 

(1.12) of operators Mr* with Re 7 _> 1, t = 1 - e, 6 = 2; a family of Poisson 

operators ~(x) --* q~(x,r), where r = 1 - e ,  6 = 1. A family (1.11) with Re 7 < 1, 

= 1 - t is an example of a non-regular approximate identity. 
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THEOREM 1.2: Let f = I~v, O < o~ < n, v E M(E , ) .  Then 

(1.20) [ to(x)dv(x) = lim [ to(x)(T, ~f)(x)dx 
Jr. n • --'," 0 , J ~ n  

for any to E Loo(E.).  

restored by the formula 

Isr. J. Math. 

In particular, the measure v(~2), f~ E 13(En), may be 

By virtue of (1.10) " t,~, hm~_0kt ,  m = 1. Thus, the relation 

(1.24) }imo(Ket"~)(x) = ~(x) 

holds on the set y ( n . )  which is dense in Xp(~ . ) .  h order to extend this relation 

to functions ~ E X r ( E ,  ) it is sufficient to prove the regularity of the approxima- 

tire identity {K~'a}. Indeed, if (1.19) holds for k~ ,'~, then we have the following 

uniform estimate 

(1.25) 

IIK~'"llx, < ~"- '  II~llx, ~ (1 + ~)"/~-~d~ < Aall~llx,, ~ = e(~), 
'~ 1 

f 
(1.21) ~(~) = I~ Jo(T,~f)(x)dx. 

If v is an absolutely continuous measure (with respect to the Lebesgue measure 
on ~,n) with the density ~ E Xp(En), 1 ~_ p ~ oo, then 

(1.22) ~(x) = (T~ f ) ( z )  - lim~.~o(T,°f)(z), 

where the limit may be a/so treated in Xp-norrn. 

Proof." At first we consider the case f = I ~ ,  ~ E Xp(En). Denote 

(1.23) (K~'=~°)(z) = / r . ,  ket'~(xY)~°(Y)dY' 

kit's(r) being a kernel (1.16). Using the Funk-Hecke theorem [4, p.247] we have 

(K~'"Ym,~)(x) = k~:,~Ym,~(x), where according to (1.14), (1.11) the multiplier 

kt,= has the form ~ m  

k,,~ m!r(%-F-) 
",~ =r(m + ~-F-) 
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that  leads to the equality 

(1.26) lim ] I K ~ ' ~  - ~l lx,  = 0. 
t¢.-l*0 

This equality in conjunction with the convergence Ktt"~Y,,~,~, ~ Ym,~, and with the 

Corrollary 1.1 provides the convergence (Kte'a~p)(x) ~ ¢p(x) almost everywhere. 

The validity of (1.19) for k['"(r) follows from the estimate 

rl-.12 I (r/e)~'12-1 if r < e, 

Ik[ '< ' (1 - r ) l  5 c ( . ) - - j -  t ( t ie) <~ll-t-' i f r  > e, 

that  holds for ~ < 1 and may be verified easily. 

Now let f = I~u, u E M(E,).  According to Lemma 1.1 for any w E Loo(E,,) 

we have 

as ~ --* 0. The passage to the limit is true due to Lebesgue dominated convergence 

theorem with regard to relations: 

I(K~'%~)(y)I ~ A~ll~lf~o, l im~0(K~t '~'w)(y) = w(y). I 

2. The inversion of  spherical potentials with a logarithmic kernel 

Let us consider the following integral operator: 

2 l - n  (2.1) £1og i 
assuming 7 to be a fixed positive number. The Riesz potential  I a ~  of the order 

a = n may be defined as the operator (2.1). Really, it is not hard to show that  

ta 

r(m) 
and (I.~v),,,,j, = k~vm,~,, where k,~ - F(m + n) if m _> 1 and 

r'(z) 1121og  r(z) 
k~' - r ( ~ )  ~ + ~ ( ' )  ' - " 
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THEOREM 2.1: Let f = I~v, k~ ~ 0, u E M ( E . ) ,  T 2 f  be a truncated hypersin- 

gu/ar in tegra/of  the form (1.8). Then 

a,k~ w(x)dx f(x)dx + lira w(x)(T: f)(x)dx 
n n n e - - - * O  n 

/'or any w E Leo(E,).  L'a particular, 

o.k~' , ,  

rues fl being a Lebesque measure of ft. If  u is an absolutly continuous measure 

with the density ~ E Xp(E,) ,  then 

1 k f ( x )dx+(T" f ) (x ) ,  (2.3) V ( x ) -  ank~ . 

where (T"f)(x)  = lira ::~o(T2y)(x) = lira ~x_.~o)(T~')(z ). 

Proof: If 0 < a < n, e > n/2, then (1.14)-(1.16) yield 

T:[Fu - c.,.7"-"u(E.)] = / _  
n 

(2.4) 

where 

~',"(.) = f f  ~,,.o/.(,)(1 - ~2~+~ ("-'~)/'- ' 

r (~ - -~ ) (1  + ~')~-"/2(r - 1 + e~)~./2-~ _ ~ a~, 
x 2~r,/2r(a/2)(eT/)(,+~,)/2_ 1 

We note, that 

(2.5) lim 
0¢-- '~  n 

• " ~ - / +  ~. A t , . / 2  , 

where # ,  = 41im,~_. #~/(n - a ) .  Really, decomposing the integral in the left- 

hand side into two integrals (from zero to 1/e mad from 1/e to 2/e) and using 



Vol. 79, 1992 INVERSION OF FRACTIONAL INTEGRALS 61 

(1.10) we can prove tha t  the first te rm tends to zero and for the second one the 

following relation holds: 

2(~'-")/2+2Pa A 4pa  f21e 

If we pass to the limit in (2.4) as a --* n, then by vir tue of  (2.5) we have 

p* 
~2o) ~:'~ = Z .  ~: ~ ' ~ ) ~ ) +  ~ ) r ~ ' , ~ ' ~  (~) • 

Assume dr(y) = ~o(!l)dy, ~o e Xp(•.) and represent the kernel ~.t,.(~.) in the 

form 

(2.7) 
w h e r e  

~',."(,) = k, . , ( , )  + k~., + k~.,(,), 

r(")"-"/~(1 + ,y-"/~ 
k~,,(,) = 2E-12) 

• ,of '"~' ,o/ ' (")O- ~)-'('-~(.~.-,+'"):"-' ~, 
t l i e  i 

k,., = -:1 ]o ~'."/2(~){, 1 - E~-'d~'2 / 

r(n)~r--12 t 2 1 ,  , - 1  

Let 

(2.8) 

k i11, (KI.,~)(~) = k , , , ( ~ y ) ~ ( ~ ) d v  = 
n 40 
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• & . e .  As in (1.22) hm._.o(K,,.~a)(x ) lim~X_.~o)(Kl,.~o)(x ) = ~a(x). By virtue of 

(1.10) we have lim.--.ok2,. = 1/a.. The kernel k3,.(r) admits the estimate 

(2.9) Ik~,.(~)l < Cd-"/~h("),  h(r) = { t, ,- > o, 
- 1 + log 1 y~; ,  r < 0, 

that  yields the inequality 

I/~ k3,,(xY)~(y)dyl < C~t-n/2 ~ h(xy)'~(Y)'dY • 

The relation (2.6) and the argument above leads to the following equalities 

" &"" T"I" z = lim~X~(T:I~a)(z) = ~o(x) - -~./~ ~a(x)dx, (2.10) hm,_.,0 ( , .fqo)( ) 1 
n 

that give (2.3). Let us consider the general case f = I.~u, u E M ( E , ) .  Given an 

arbitrary., e Loo(E,,), according to (2.6) we have 

lira / w(z)(T~f)(x)dx = !im f~ (K,,~oa)(y)du(y) u(E_...~)/~ oa(x)dx 

= ,~(v)d~(y)-  ,~,,k---~o j~ .  
n n 

Remark 2.h The inequality k~' ~ 0 holds for any 7 > 2. If 0 < 7 < 2, then 

k~ ~ 0 in the following cases: 

1) n is even and log ~ is irrational; 

2) n is odd and log 7 is irrational• 

In another cases the equality k~ = 0 may be true (e.g•, n -- 1 arid 7 -- 1, or 

n = 2 and 7 = 2 /v /~ .  We investigate these critical cases in Section 5. 

3.  T h e  i n v e r s i o n  o f  R i e s z  p o t e n t i a l s  b y  m e a n s  o f  h y p e r s i n g u l a r  o p e r a -  

t o r s  c o n t a i n i n g  a P o i s s o n  i n t e g r a l  

The direct regularization method used in previous sections may also be applied 

for Riesz potentials of the orders a > n. But the consideration of such a's in the 

frame of this method is connected with cumbersome technicalities, so we prefer 

to exhibit another approach which is based on the representation of I ~ o  via the 

Poisson integral and covers all positive a. 

Denote 
ri-(~+~)l~ [ r  

( z " ' ~ ¢ ) ( r )  - r ( ~ )  J0 ¢ ( P ) P ( " - ~ ) / ~ - ' ( "  - p) ..... ~dp, o < ~ < n. 
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In particular, 

(3.2) 
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It'0 < (~ < n, ¢p E L1(En), then 

(I~o)(x,r) = (Zn'~(x, '))(r) .  

( l ~ ) ( x )  - F((~) P("-~)/2-'(l - -  P)a-lcfl(x'P)dP" 

(3.4) 

w h e r e  

63 

Proof'. Changing the order of integration we obtain 

[ ( Z " ' ~ ( x ,  "))(r)lm,. = ~m,.(Z"'~pm)(r)  = r m r i m  + ~ -~)  n__+__~'m,., r E (0, 1], 
r ( m +  2 , 

that  gives (3.1), (3.2). | 

Using (3.1) we may solve the equation I ~  = f by the following way. Let us 

apply the Poisson operator Pr : f(x) ~ fix, r) to both sides of Iotp = f and 

rewrite the result in the form 

r ( ~ )  (~ - p)~-'p("-")/~-'~(~,p)dp = ~(.+~)/2-~y(~,~). 

If we invert the fractional integral operator in the left-hand side by means of 

Marchaud's derivative (see [14], [8]) and then set r = 1, we obtain the following 

formula 

j----O 

(3.3) dd (7~f)(x) 

Let us give a strict proof of this formula. Define I~u for all a > 0, u E M ( E . )  

assuming 

(I~u)(x) ~ E k~,um,.Ym,.(x), 
rn ,p .  

r(m + ~-~) 
if a - n ! t z + ,  m_>0 

r(m + %-~-) 2 

and if ((~- n)/2 = k E Z+, re>k;  
kOt = 

m 

cm if ( a - n ) / 2 = k e Z + ,  m_<k,  
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{cm} being an arbitrary sequence of complex numbers different from zero. 

The operator (3.4) is bounded from M ( E , )  into L](E,,) (it follows, e.g., from 

Lemma 4.1 below). Consider the inversion problem for the operator (3.4). We 

denote 

(3.5) 

(T,"f)(:~) = ~t(a).,~ ' ; - " - '  [y=~o(~)(-1)J(1-jri)(+n+'O/2-1f(z,l-jTI)] &7, 

t>a 
LEMMA 3.2: Let a > 0, 1 ~ p _< oo. Then 

(3.6) /im~X_.,o)(Ta.y,,.~.)(z) = F(m + "2-":~) 

Proof: Let us continue the following obvious equality 

r(,~) ~ -~ ( 1  - ,1)("-~)/2+m-'d,7 - r ( ~  + N -a) ._.~.~ ~ , 0 < Re)~ < I, 
r ( m  + ~ , 

analytically to the strip - t  < Re A < 0, t E N. Representing the analytical 

continuation of the left-hand side in a difference integral form (see [13]) we have 

1 r(X_ , )(_l)J(1 _j~)(.-,x)/2+m-] &l -- r'(m + ~2--~)" ~d-.~) jffi0 

Hence 

(3.7) 

Kt(a) rl-°-] (-1)J(1 - J")(n+°')/'~+m-' d" = r (m + "2-~) 
~=o r ( ~  + ~-*) 

for a E (0, t). It is easy to see that 

(3.8) (~Y=,~)(~)  = a~(e )Y. , . (x ) ,  

where 

The equality (3.6) follows from (3.7) and (3.S). | 
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THEOREM 3.1: Let f = I~v be the potential (3.4), a > O, v E M(~n). 

the limit 
(f(a),w) de----f lim [ w(x)(r: f )(x)dx 

e'-'~O ~ n  

exists for any w 6 Loo(E,), and 

i f  (a - n)/2 ~ Z+, (f('~),w) f (~,~) = { 

I 
(3.9) 

In particular, 

+ ~ E fm'~wrn'l' if (a-n)/2=kEZ+. 
Cm 

m=O p 

Then 

{ lixm~(Ttof)(x)dx i f  ~ ( a - n ) / 2 ; Z + ,  

(3.10) v(f~)---- }ixm (T•f)(x)dz + E E f,n,___.~ Yra,u(x)dx 
Cm 

m=O /~ 

i f  ( a - n ) / 2 = k 6 Z + .  

I f  v is an absolutely continuous measure with the density ~a E Xp(~,) ,  then 

1) there exists the limit (TC'f)(x) = l im~o(<=f)(z ) ,  treated also in Xp- 

norm; 
2) the following inversion formula holds: 

(3.11/ 
{ (r~S)(~) ~ iS (~-  ~)/2 ~ z+, 

k 

~(~1 = (7~f l ( z )  + ~ ~ Y,,,,,,(.) i f  (a - n)/2 = k e Z+. 
m = 0  p 

Proof" Let us fix s(e Z+) > (o~ - n)/2 - 1, and assume 

8 

(A.~)(.) = ~(~) - Z ~ ~-,~Y-,.(~), 
m=O p 

Given v E M(E.), we denote 

e n,(p,,). 

8 

(A.,)(n) = ~(n) - ~ ~ ~.,. L V.,.(x)d., 
m = 0  t* 

It is not hard to show that 

n e B(s.). 

(3.12) i(AsYm, t,)(z,p)l < as + llYm, v(z) I VYm,/~(z) C Y(E,,) 
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and 

(3.13) .a,  ( n - . ) / 2 - * , .  v ,+ [p+ (.as, m, #)(x, p)](r) = r ("+")/2-1 (As Iaym, p)(x, r). 

Let us extent (3.13) to a l l  m e a s u r e s  v e M(En).  S i n c e  

<_ II(As,o)(.,p)ltcllvlIM <_ ps + lllvllMiiwiic 

for any w E C(En), then 

(3.14) II(Asv)(., P)llL,(~.) _< ps + l l lvi ig(E.)  ' 

and therefore I~ [p( n-a)/~-l(A s v)(x, p)](r) E L1 (En). 

Now we can assert the equality 

(3.15) X~[ /n-a ) /2 - ' (Asv) (x ,p) ] ( r )  = r¢"+a)/2-~(Aslav)(z,r) 

to be valid since the Fourier-Laplace coefficients of its both sides coincide by 

virtue of (3.13). Using for f = I a v  the known scheme of inverting of fractional 

integrals (see [14], [13]) we have 

(3.16) "l:)~.,e[p("+")/2-1(Asf)(x,p)](r) 

fo ~ (,,-a)/2-1 = ~t,~(~)(~ - ~ ) +  (A~ ~)(~, ~ - ~ ) d ~ ,  

At,a being a kernel of the form (1.9). 

Denote 

~0 °° -,e(n--a)/2--1 t 

If v is an absolutely continuous measure with a density V~, we shall write A,~ 

instead of h ,v .  Let us rewrite (3.16) in the form (~aAsf) (x ,  r) = (A,Asv)(x, r) 
and go to the limit as r ~ 1. We obtain 

(3.17) (T,~A,f)(x) = (A,Asv)(x). 

Suppose v to be an absolutely continuous measure with a density ~ E Xp(E, ) .  

If we prove that 

l im~0(T~aA,  f ) (z )  = (A~to)(x) 
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then, using the equality 

(3.18) (~"A , f ) ( x )  = (Tt"f)(x) - £ Z fm'~(~Ym'")(x)  
m=O p 

and Lemma 3.2, we obtain the a.e. convergence of the integral (raf)(x)  and the 

formula 

r(m + "2--~) 
(3.19) A , ~ =  l i m : ~ o ~ "  j - ....., z~Jm,~ ,~ ' -7 "7  

m = O  gt 
.,. k , , o  T 

that gives (3.11). Let 

(f01/2e [~/~ ( A , A s ~ ) ( x )  = + J,/2,  At,o,(r/)(1 - ~TI)('~-'OI2-'(A,~p)(x, 1 - et l )&l)  

(3.20) = A~,~ + A~,2~. 

(if (a - n)/2 = k E Z+ we assume s = k). By virtue of (1.10) and according to 

relations 

sup I(A.~)(x,r)l  < C(A.,~)*(x), lim~'~t(Ao~)(z,r) = (A.~)(z) 
O < r < l  

the first integral tends to (As~)(x). The second one tends to zero since 

[ ' /" , ¢ . - t - 1 ( 1  - ~,1) ( " - " ) / ~ - '  I ( A s ~ , ) ( . ,  1 - ~,7)1d,7 IA . , z~ l  < O J,/2. 
1/2 

= ¢ t - -a  # (n - -a ) /2 - -1  I(As~)(x, p)l(1 - p)o-t-1 alp. 
, /0 

Using (3.20) and the relations 

(xp) 
sup II(As~)(.,r)Hx, < IlAs~llx,, limr--.1 (As~)(x,r) = (As~)(x), 

0 < r < l  

it is easy to show that lime-..0 IITE'Asf - As~llx, = O. 
The last equality leads to the formula (3.9), in which the hypersingular integral 

(T~f)(x)  is treated as a limit in Xp-norm. If f = I'~v, v E M(~,,) ,  then by virtue 
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of (3.5), (3.17) for any ~ E Loo(En) we have 

lira / w(z)(~af)(x)dx - r(m + ~f,,,,~,,,,,,,,~, 
• -~0 j r ~  = r ( m  + 2 , 

= lim / ~(x)(ZaA.f)(x)dx = h ~  ~(x)(A.A.v)(x)dx 
a-.*O J E n  n 

= h~m ° fv,(A.~)(y)d(Aou)(y)= ~ ~(y)d(Aou)(y) 
$ 

m----0 /A 

that gives (3.7), (3.8). | 

4. The description of spaces L~(E.), Ca(E.), Ma(E.)  

It is convenient to use the unique notation X(E,,) for spaces Lp(P,n) (1 < 
p _< oo), C(E.), M(E.)  and the notation Xa(E.) for corresponding spaces 

o 

L~(~n), Ca(E,,), Ma(E, ) .  We denote by X(En) a subspace of the space X(En) 
that consists of functions (or measures) with a zero mean value. Let us redenote 

the operator (3.4) by I~' and consider the following spaces generated by fractional 

integrals (3.4), (8)-(11): 

(4.1) I'~(X) = { f :  f = I~W, W E X(~n)}, j = 0,1, 2, 

o o 

(4.2) I 7 ( x )  = { / :  f = ~7~, ~ e x ( r , . ) } ,  j = 3, 4, 

with norms defined as the corresponding norms of ~o. The spaces (4.2) do not 

contain constants, therefore we also introduce the spaces 

o o 

(4.3) C+I~(X)={f:f=c+I~o, cEC, ~ E X ( E n ) } ,  j = 3 , 4 ,  

with the norms 

Ilfl[c+l;(& ) =I[c + IT~l[c+x~(& ) ~ Icl + ll~ll&tr. ). 

We need the following auxiliary assertion. 
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If  the multiplier {km } m°°_-o of the operator K satisfies the asymptotic 

N-I 
ci 

(4.4) k,,, = E mX+'-"---~ + O(m-X-N) '  m ~ oo, 
j=0 

where A > O, A + N > n, then K is a bounded operator in X ( ~ , ) .  

Proof: We rewrite (4.4) in the form 

N - I  ~j 
krn = ~ "4- kin, km= O(m-A-N), (~ 4i)~+J 

m ----~ o o .  

According to Lemma 1 from [15] the opera tor /~  generated by {~m} is a spher- 

ical convolution with a continuous function defined on [-1,  1]. The operators 

(9), corresponding to multipliers {(m + 1)-x-J},  are bounded in spaces under 

consideration. This gives the required result. | 
o 

LEMMA 4.2: Y h e s p a c e s X a ( ~ , ) ,  I ? ( X ) ( j  = 0,1,2), C + I ? ( X ) ( j  = 3,4) 

coJnside up to the equivaIence o5 the norms. 

Proof: The relation X a ( ~ , )  = I~(X)  follows from the definition of X'~(~,,). 

The relations I~(X)  = I~(X)  = I~(X)  follow by virtue of Lemma 4.1 from the 

equality 
1 

(m + 1)~ 
since the multipliers 

r(m+l)  k* 
- r(-&---~ i T a )  = k ~ 7 ,  

F(m + 1 + a)  1 1 1 
k:. = r(m + 1)(m + 1)~' k::(m + 1)~k~' k~' T:j 

o 

satisfy (4.4). The relations I~(X)  = C+Ij~(X),  j = 3, 4, may be proved similarly. 
| 

Lemma 4.2 enables us to use the operators I~(j = 0,1, 2, 3, 4) for the descrip- 

tion of the space X~'(En). We shall not use the integral I~0  for this purpose in 

the sequel because it is quite cumbersome. 

The following theorem contains a description of the space XC'(~,)  for 0 < ¢x < 

n in terms of operator T, a of the form (1.8). 



70 B. RUBIN Isr. J.  Math.  

THEOREM 4.1: Let 0 < a _< n, f • L I (E , ) .  

I. If I < p < oo the following assertions are equivalent: 

a) f • X;(~n); 
b) the sequence T f  f converges in Xp-norm as e --+ O. 

II. I f1  < p < co, then f • L ~ ( ~ , )  iff 

III. 

(4.5) sup IlT~fHp < oo. 
0<e<2 

The following assertions are equivalent: 

a') f e Ma(En);  

V )  the sequence rE. ( T : f ) ( x ) w ( x ) d x  converges as e ~ 0 for any w • 

c(r..); 

(4.6) sup IlT~flh < oo. 
0<e(2 

Proof." Let f e X ; (E , , ) .  Then f = I~9,  ~ e Xp(E , )  (in the case a = n 

we mean I " ~  to be a potential I~q0 of the form (2.1)), and T ~ f  converges in 

X f n o r m  by virtue of theorems 1.2, 2.1. Let us show that b) implies a). We note 

(4.7) lC'T~f = T~lC'f 

(this equality may be easily verified on spherical harmonies, and then may be 

extended to f E Xp(En)  by virtue of a boundedness of the operators I ~ and T:' 

in XAr , , ) ) .  If 0 < ~ < ~, then, assuming ~o = lim ~x'0)Tfff, with regard to (4.7) 

and to Theorem 1.2 we have 

• . (X,).a,--a,. lim~X__.~T~iaf f, I~ = nm ,---,o I .L, I = = 

i.e., f e X ; ( E , ) .  In the case a = n we assume 

1 lira ~x~Tnf ,  = --7~p(f) + 

and by virtue of (2.3) we have 

P(f) I"[1] (Xp)rnT" ~ P(f) 
e.--~O ~ ~ ¢  J ~ r  n 

I " ~ = ~  , ~+lim = 

P(f)=L f(y)dy, 
n 

1 
1 I n 

+ f - ~nk~P( f ) =  f ,  
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i.e., f E X~(~,,) .  To prove I l l e t  f E L~(~,,),  1 < p < c¢, i.e., f = I~q0, 

So E Lr(~, ,  ). If 0 < ot < n, the inequality (4.5) follows from (1.25). If o~ = n, 

then (4.5) is a consequence of both (2.6) and (2.7), since the convolution (2.8) 

satisfies (1.25) and ]k2,e] < cl, ]k3,,(v)] < c2h('r) (see(2.9)), with the constants 

cl, c2 not depending on ~ E (0, 1). Vice versa, since the unit ball in a space dual 

to a Banach space is compact in a weak* topology then by virtue of (4.5) there 

exists a sequence ek ~ 0 and a function qv E Lr(~, ,  ) such that 

1 1 
l i r a ( T ~ f , w )  = (qo,w) Vw E Lp,(E,,),  + = 1. 

Hence 

(I~'~o,w) = (~o,I~'w) = lira (T~rf, I~'w) = 

= lim ( f ,T~k I~w)  = ( f ,w )  V~ G Lv,(E,,  ), 
~k---+0 

i .e . ,  f = I~'~o E L ~ ( ~ , , ) .  

Let us prove III. If f E M~(E,,) ,  then by virtue of Lemma 4.2 f = 

I~v, v E M(~,n), and b') follows from theorems 1.2, 2.1. Conversly, since the 

space M(~ , , )  is weakly* complete, then there exists a measure v E M(E, , )  such 

that l im~--.o(T~f,w) = (v,w) Vw E C(~,,).  Hence 

(4.8) 

(I'~v, w) = (t,, I'~w) = !hno(T• f , I"w)  = ~i~(f ,  T:I '~w)  = ( f ,  w) Vw E C(~, ,) ,  

and therefore f = I av  E M~(E,,).  The proof of the equivalence of a') and c') is 

similar to the proof of the assertion II with replacing ~ by sk -+ 0 in (4.8). I 

Let us exhibit a number of another description of spaces L~(~,,),  C~(~,,) ,  

M a ( ~ , )  for all a > 0 in terms of hypersingular constructions containing a Poisson 

integral. Given ~ E (0, 1), g(E N) > a,  we denote 

(see (3.5)), 

(4.9) 

(Toa:f)(x) = ( ~ '  f ) ( x )  

j=0 

jffi0 
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(4.11) 1 , .  ] o  
j=0 

The truncated hypersingular integrals (4.9)-(4.11) arise a s  ~'~f when inverting 

the corresponding fractional integrals (8)-(10) in a formal way. Really, the Pois- 
son integrals (IT~,)(z, r) (j = 1, 2,3) and ~,(x,r) are tied by means of the 

following fractional integrals: 

(4.12) r _ .  / r ( r  _ p ) " - ' ~ ( z ,  p)ap, 
( r ~ ) ( z , r )  = r(~)  

r--1 / r  / r x a _  1 
(4.13) (I~qo)(x, r) - F(~) ~ log p )  ¢p(x, p)dp, 

[ (4.14) ( I ~ ) ( x , r )  - r(~)  p ,  p 

The inversion of these integrals according to A. Marchaud's scheme leads 

to (4.9)-(4.11). 

THEOREM 4.2: Let ~ > O, f E L I ( ~ , ) ;  j = 0,1,2,3. 
I. I f  1 < p < oo the following statements are equivalent: 

a) f ~ X ; ( ~ , ) ;  
b) the sequence ~ , e f  converges as ~ ~ 0 in Xp-norm. 

n.  If i < v -< co, then f ~ L~(E . )  itt 

(4.15) sup II~,%fllp < oo. 
0<z<l 

III. The following statements are equivalent: 

a') / E Ma(En);  

b') the sequence f~ ,  ( ~ , , f ) ( z ) w ( x ) d x  converges as e ~ 0 for any w E 

c(z.); 
d )  

Proof'. 

(4.16) sup II~,%fll, < o o .  
O<t<l 
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I. Let f E X~(E,,) .  Then f = l ~ j ,  ~oj E Xr(E,,  ) Vj = 0,1,2 a n d /  = 

2 ~  + ~0, where ~ e 3 6 ( ~ . ) ,  co e C. If j = 0, the sequence ~ , 5 f  converges 

as ~ ~ 0 in X f n o r m  due to Theorem 3.1. If j = 1, 2, then using the argument 

as in the proof of Theorem 3.1 we obtain the representations 

(4.17) ( ~ S f ) ( x )  = ~ t , . ( , ) v , ( ~ ,  1 - , o ) d ,  = ( A / % , ) ( x ) ,  

~0 °~ 
(4.18) ( ~ ? d ) ( ~ )  = :~,~,(,7)(1 - ~)"~o~(~, (1 - e)")a,7 = (A?)~2)(~) ,  

If j = 3, then 'Ts,~,co = 0 and we have 

(4.191 ( ~ ? j ) ( ~ )  = ~,~(~)~o~(~, (1 - ~)~)d,7 = ( A ~ % ~ ) ( ~ ) .  

"'m (XD TY " It follows from (4.17)-(4.19) that n ~-.0 j ,~l  = Tj, J = 1, 2, 3. Con- 
,. (XD 

versly, let b) hold and qoj = nm~_~0 Tj,~f. Then for j = 1, 2 and in the case 

j = 0, ~ ~ Z+ we obtain 

(I;¢pj, w) = (~oj, I ;w)  = lim(Tj~, f ,  I~'w) = l im(f ,  T~a.tI~.w) = ( f ,  w) 
t.---~O * ¢-'-*0 I, .7 

for all w E S (E , ) .  

Hence f = Ij~0¢ and therefore f E X~'(E,) .  Let j = 0, ~'2" - s E Z+. 

Then, using the notation and results from a previous section, for any w E S ( E , )  

w e  h a v e  

( I° 'As~o,w)  = ( IaA ,~o ,  A ,w)  = (A,~oo, I '~Asw) 

= (q~o, I* 'A,w) = lim(To.~,f, I '~Asw) 
¢-"*0 

= ~irno(f, To~,,I'~Asw) = (S, A ,w)  = ( A , f , w ) .  

Hence 

m = O  p 

If j = 3, then 

n 

fo =f__f~. 
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We note (T~,%f)~, = 0, and therefore (~). = 0. But then (I~3),, = 0, and 

for any w E S (~ . )  we have 

= °) + 

= (~,/~w °) = lim (Ts.~j,/~w °) 

= l i m ( f , ~ , I ~ w  °) = ( f ,w  °) = ( f  - re,w), 
e"'*O 

that gives f = f¢ + I ~ 3 .  Acoording to Lemma 4.2 this equality means that 

f e X;(r .~).  

II. Let f E L~(~n),  1 < p <_ oo. Then the estimate (4.15) for j = 1, 2, 3 

follows from (4.17)-(4.19) due to properties of a Poisson integral with regard to 

(1.10). If j = 0, then according to (3.18), (3.17), (3.8) we obtain 

8 

(Toa, J ) ( x )  = (A,A,~o)(x) + ~ ~ t,~ y. 
m = 0  

and the required estimate may be easily seen from the inequlity II(A.~,)(., p)llp -< 

ps+IU~[[ p. If I < p < oo this inequality is a consequence of (3.12). In the case 

p = oo it follows from the estimate 

If~, ¢(x)(AsT~)(z,p)dz] = IA I 
II llooll(A  )(.,p)ll  p*+ ll llooll ll  v¢  

The inverse assertion may be proved like the assertion "b)=va)" from the 

item I with replacing ~ by ~k (see the similar argument in the proof of the item 

II of Theorem 4.1). 

III. Let f E M~(~n). Then for j = 0 the assertion b ~) follows from Lemma 4.2 

and from Theorem 3.1. For j = 1,2, 3 we replace the functions qoj in (4.17)-(4.19) 

by measures vj E Mj(~n).  Thus, (Tja, j , w )  = (A!i)vi,w) = (vj,A(,i)w) ~ (vj ,w) 

as e ~ 0 for any w E C(En). One can prove the assertion "b') =~ a')" by the 

same way as the asseriton "b) =va)". The functions ~oj should be replaced by 

measures vj which are the weak* limits of sequences ~,~,f. The equivalence of 

1 t) and 3') may be proved similarly to the asserion II. 1 
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Remark 4. I: While proving Theorem 4.2 we had obtained the inversion formulas 

for integrals I~, j = 1,2,3. Namely, if f = I~, a > 0, 1 _< p < ~, ~ E Xp(r,,,) 

(if j = 3 we assume ~o E X,(En)) ,  then ~o = Tj~f = lim~X~ Tj,%f. It is not hard 

to prove the a.e. convergence of T/,%f. 

5. Integral equation with a power - loga r i t hmic  kernel  

According to (3.4) there is an infinite number of ways to define a Riesz potential 

I ~  for ~ = n+2k, k E Z+. Presently we restrict ourselves by the case when the 

Riesz potential of the order a = n + 2k is represented by a spherical convolution 

of the form 

(5.1) (L~+2k~)(x) = Tk,,, /~, ~P(Y)lx --Y[2klog ]x T-~_ yldy, 

where (_l)k21-,,-2k 
7k,n = 7rnl2k[r(k + n/2)" 

The operator (5.1) is a generalization of the potential (2.1). It is easy to prove 

that 

(5.2) (L~+2k)(x)= lim [(I'~o(x)--c,,,~7'~-n-2kf~o(y)[x--yl2kdy] 
c t - - - * n + 2 k  n 

and 

(5.3) (I~ +2k)(z) "" E IC'r'k(m)~vm'~'Ym'~'(x)' 
~a~It 

where 

(5.4) 

ET,~(m) = { r (m - k) / r (m + n + k) 

~n~m_l_ - -k - - - -~ ) ,  [¢(m + n  + k ) -  ¢(k + ~)+  

+¢(k  - m + 1) - ¢(k + 1) + 2log 

i f ro  > k, 

if m <  k. 

As we saw in section 3, the invertibility of I.~ +2k depends on the equality 

1C.r,k(m ) = 0 for m < k, i.e., it depends on 7. 
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LEMMA 5.1: For any 7 > 0 the equation/CT,k(m ) = 0 has not more than one 

solution belonging to the set {0, 1 , . . . ,  k}. For a axed  m E (o, 1 , . . . ,  k} there 

exists one and only one 7 > 0 such that K~7,k(rn ) = O. 

Proof." Denote u(z)  = ~b(z+n+k)  = ~ b ( k - z + l ) .  According to formula 8.361(7) 

from [5] we have 

2 ~ t z + n + k - 1  - -  t k-z 
dt - 2C, fO u(z )  = i - t 

C being an Euler constant. Since 

du(z) f l  _ 
= Jo -f-- t 

1) log(l i t )dr  < 0 

for 0 < z < k then u(z) is a strictly decreasing function, and therefore the 

equality u(z)  = ~b(k + 9) + ~b(k + 1) = 2log ~ with fixed k E Z+ and 7 > 0 

is possible not more than for one z E [0, k]. This gives the first assertion. The 

second one is obvious. I 

Our results will be more attractive if we go over from (5.1) to the similar 

operator on a sphere ~ , ( a )  = {z E Rn+ l :  Ixl = a}. Let 

(5.5) ( M ~ , ~ ) ( x )  = 7k,n qo(y)lz - yl 2k log ~ d y .  

An operator  (5.5) may be called a Riesz potential of the order a = n + 2k on a 

sphere E , ( a ) .  For a function f ( x )  given on E , ( a )  we denote f~(~) = f (a~),  ~ Z 
_2k+n[in+2k x/i-,, ~ , .  Then ( M a , k q O ) a ( ~ )  = tt  t 1/o ~°~)tC)" As we see below, the solvabiblity 

of the equation M~,k~o = f depends on the radius a. 

Deanition 5.1: The radius a in (5.5) will be called regular if 1C1/~,k(m) # 0 for 

all m E {0, 1 , . . . ,  k}. If 1C,/a,~(m) = 0 for some m E {0, 1 , . . . ,  k} (by virtue of 

Lemma 5.1 such m is unique), then the radius a will be called a singular one of 

the type m. 

For the convenience of the reader we remind some facts from the theory of 

Noether operators (see, e.g., [12]). Let X, Y be Banach spaces. A linear bounded 

operator  A : X --* Y is called a Noether operator if its range A ( X )  is closed in 

Y and the numbers 

a(A)  = dimker  A = d im(~  E X :  A~ = 0}, 

/~(a) = dim coker A = dim Y / A ( X )  
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are finite. The ordered pair (a(A), fl(A)) is called the d-characteristic of A. 

An operator Rt (Rr) is said to be a left (right) regularizer of A if RtA = 

Ix  + K x  (ARt  = Iy + Ky) ,  where I x  ( Iy)  is an identity operator in X (in 

Y) and g z  (Ky) is a compact operator in X (in Y). If Rt = Rr = R, then the 

operator R is called a two-sided regularizer. A linear bounded operator A is a 

Noether operator iff it posseses both a left and a right bounded regularizers. 

Assume 
{ z . ( ~ . ( . ) )  if 1 < p < ~, 

x, (r . . (~) )  = c (r . . ( , ) )  ifp = oo. 

X ; ( E . ( a ) )  denotes a space of functions f(x) ,  z 6 E. (a) ,  for which f . (~)  • 

x;(r,,); 
Ilfllx;(~.(a)) aoj IIAIIx~,(~.). 

THEOREM 5.1: Let 1 <_ p <_ 00. 

I. The operator M.,k acts as a bounded operator from Xp(Z. (a) )  into 

x;+2k(r,,(a)).  

II. I f  the radius a is regular, then the operator 

M.,k : X , (E . (a ) )  --* X;+2k(~. .(a))  

is inver~able, and a solution of the equation 

(5.6) M.,I~ = f ,  f • X;+2k(En(a)) 

has the following form 

k 

where 

(5.8) (9-°,~f)(~) 
1 / 1  

~t(- + 2k) ( .~ ) - . -2~  

a-2k-~.j[d.(j)r(n/2)  
Aj = a . r ( j  + n/2)]C1/a,k(j)" 
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III. For every a > 0 the operator T *,k annihilates on functions Yi,~(z/a), 

j • {0,1, . . .  ,k}, p E {1,. . .  ,d,( j)) ,  and acts as a bounded operator from 
x;,+2k(r~.(a)) into Xp(S.(a)).  

IV. If a is a singular radius of the type m (there exit exactly k + 1 such radii.l), 

then the operator: Xp(E,(a) ) ---, X;+2t (E , (a ) )  is a Noether operator with 

the d-characteristic ( d .  ( m ), d .  ( m ) ). ha this case the following statements 

hold: 

a) The hypersingular operator T °,~ (5.8) is a two-sided regularizer for 

Ma,t. 
b) If the equation (5.6) is solvable, then its "general" solution has the 

form 

(5.9) ~(z) = (Ta'tf)(z) 
k 

,., \ e(,12-1, . /2-1)(xy'~ 

(j # m) 

dn(m) 
+ ~ c~,Y,.,,,(zla), 

p=O 

% being arbitrary constants. 

c) The equation (5.8) is sol~ble in Xp(~.(a)) iSr 

(5.10) (f~)m,t, = 0  V/z = 1,2 , . . . ,d , (m) .  

Proof: The assertion I follows from Lemma 4.2. The assertion II follows from 

Lemma 4.2 and from Theorem 3.1. The formula (5.7) may be deduced from the 

addition theorem for spherical harmonics ([4]). The first assertion from III is 

obvious if we use the equality (T~,kf)~(~) = a-2k-"(T"+2~f~)(~) and Lemma 

3.2. Let us prove that the operator T ~,k is bounded from X~+2k(~n(a)) into 

Xp(Sn(a)). Given f E X;+2k(~,,,(a)) we have f ( , ~ )  = fa(.~lb) E X;+lt(Sn(b)) 
for any b > O. If we choose b regular, then according to II there is a function 

~(~) E Xp(S,,(b)) such that f (~)  = (Mb,k~)($). Assuming 

~(y) = (b/a)"+2k~(by/a) E Xn(S,(a)), 

we obtain 

(b  z 7k,, [JE [axb Iblal f(~) = (Mb,,~) ~3 = " . ( b ) -  ~ l ~ k l ° g -  ~71 ~(~)d~ 
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/r I:~ - Y I 2 k ~ ( Y ) d Y  • = (M,,k~)(x) + "yk,,(b/a) 2~+" log(a/b) 

Hence 

k d,,(j)  

(5.11) f(x) = (Ma,t(p)(x) "-t- E E ci(~Pal£~'Y£~'(x/a)' 
j=O p= l  

where c i may be readily calculated by the Funk-Hecke theorem. We note that 

by virtue of (3.19) 

k ,~,,(i) 
(5.12) (~':,*M,,,~)(x) = ~(x) - ~ ~ (~,,)j,,,Y~,,,(,/a) = 

j=O p=O 

(5.13) 
k j~_o ~-`-'D(n/2-1,n/2-1){xy'J. F(n/2)d,( j ) j !  

~J = ~ . a " r ( j  + n/2)" 

Let us apply the operator 7 -a'k to (5.11). Since 7 "',k annihilates on function 

Yj,~(x/a), j = O, 1 , . . . ,  k, by virtue of (5.13) we obtain 

k j~O ~ • [-'D(n/2-1'n/2-1)[xy' (T"~/)(x)  = ~ ' (x)-  ~i ~ ( ~ ) ~ J ' i  L~-JdY • 

Hence 

]l'l-~'kfllxn(r~.(a)) < ~ll~llxp(r~(a)) < cll~llx~(r~.(b)) < ~ll]llx2+2k(r~.(b)) 
= c]lfllx2+2k(~.(a) ) 

(c denotes different constants). 

Let us prove IV. The statement a) follows from (5.12) since the finite- 

dimensional operator in the right-hand side is compact. Thus, Ma,k is a Noether 

operator. Since )C1/a,k(m) = 0 and /C1/~,k(ml) ~ 0 for any ml ¢ m then 

dim ker Ma,k = d,(m) and ker Ma,k consists of linear combinations of functions 

Y,,,~(x/a), p = 1,2, . . .  ,d ,(m).  With regard to (5.12) this gives b). The neces- 

sity of c) is obvious because IC1/~,k(m) = 0. To prove the sufficiency we rewrite 

(5.11) in the form 

d.(m) 

(5.14) fa(~) = (Ma,kg)a(~) + Cm E (~a)m,~,Ym,p(~), 
p=l  



80 B. RUBIN Isr. J. Math. 

where 

k an(j)  
(5.15) g.(¢) = + F_, F_, 

j =0  ~=1 

(j # m) 

cj 

Calculating the Fourier-Laplace coefficients of both sides of (5.14), by virtue of 

(5.10) we obtain (~.)m,~, = 0. Hence f = Ma,hg, i.e.the equation (5.6) is solvable 

in 

To end the proof we note that 

dim coker M~,k = dimX~+2k(~,~(a))/Ma,k(Xp(~n(a)))  = d.(m).  

This equality follows from (5.14). 1 
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